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Abstract

Active flow control of electrically conducting fluids finds growing importance in the metallurgical industry. A magnetic
field applied in the streamwise direction of electrically conducting fluid flow restrains the velocity fluctuations in the trans-
verse plane and the transition to turbulence may be delayed. The smoothed particle hydrodynamic (SPH) methodology is
employed to interpret this concept. To this purpose, the onset of turbulence is related to the transitional organization of the
SPH fluid particle structure or to the temporal history of the turbulence-related quantities during the early stages of the
transition to turbulence. The results put in evidence the ability of a streamwise magnetic field on controlling the transition
to turbulence of an electrically conducting fluid flow, i.e., the transition to turbulence may be distinctly delayed in the fluid
flow subjected to a streamwise magnetic field. Furthermore, if the applied streamwise magnetic field is strong enough, the
Reynolds stress in the streamwise direction may be dominant over the transverse counterpart, and turbulence is anisotropic
as only in the streamwise direction of the fluid flow, the Reynolds stress is detectable.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Turbulence is a complex phenomenon, which has been the object of intense research for some time. Even
so, basic questions remain to be fully answered, for instance, the underlying mechanisms related to the
transition of the flow regime from laminar to turbulent as the flow rate is increased are still not well-under-
stood [1–4]. The work to be reported here does not aim to resolve this issue, but to present a novel numerical
method for dealing with the control of transition to turbulence in planar shear flows from the viewpoint of
magnetohydrodynamics (MHD).

Motion of electrically conducting fluids, such as liquid metals, across a magnetic field induces the so-called
Lorentz force. This force, when properly handled, may suppress the flow instability and control the onset of
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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turbulence. The original work of Hartmann and Lazarus [5] was the first one to identify the modification in
drag and the suppression of turbulence when a magnetic field is applied to turbulent liquid metal flows. From
then on, MHD began to arouse growing interest in metallurgical applications, in particular, to create favour-
able flow conditions in tundish devices, as described by Szekely and Ilegbusi [6].

A magnetic field applied in the transverse (wall-normal) direction of a fluid flow creates a ponderomotive
body force and changes the mean velocity profile due to the formation of the so-called Hartmann layers [7,8]
at electrically insulating boundaries normal to the magnetic field. Numerous studies with particular emphasis
on the structure of the flow pattern have been addressed to the interactions between fluid flow and the applied
transverse magnetic field, as cited by Lee and Choi [7]. Krasnov et al. [8] investigated the flow instability and
transition to turbulence of low magnetic Reynolds number flow between two parallel electrically insulating
walls. In contrast to the transverse magnetic field, a magnetic field applied in the streamwise direction does
not directly interact with the mean flow, but it does restrain the turbulence fluctuations in the transverse plane
of fluid flow. If the applied streamwise magnetic field is strong enough, the turbulent quantities in the trans-
verse directions of the flow have their development prevented. The flow instability may be restrained and the
transition to turbulence may be delayed, or even arrested. This work aims to interpret this concept by means
of smoothed particle hydrodynamics (SPH) simulations, rather than by the commonly used Eulerian-based
computational fluid dynamics (CFD), an approach, which has already demonstrated its adequacy in MHD
turbulence research [7–9].

SPH is a meshless particle based Lagrangian fluid dynamics simulation technique, in which the fluid flow is
represented by a collection of discrete elements or pseudo-particles. These particles are initially distributed
with a specified density distribution and evolve in time according to the fluid conservation equations (e.g.,
mass, momentum). Flow properties are determined by an interpolation or smoothing of the nearby particle
distribution using a special weighting function – the smoothing kernel. This technique was first proposed
by Gingold and Monaghan [10] and Lucy [11] in the context of astrophysical modeling. It has been successful
in a broad spectrum of problems, among others, heat conduction [12,13], forced and natural convective flow
[14,15], low Reynolds number flow [16,17], interfacial flow [18–20], multiphase flow [21,22], viscoelastic flow
[23], viscoelastic solid mechanics [24], flow in porous materials [25–28], chemically reactive flow [29], particu-
late flow [30], non-Newtonian flow [23,31], die casting [32,33], environmental flow [34,35], and astronomy and
astrophysics [36–39]. Comprehensive reviews about the history and some advances of SPH can be found in
[40,41].

In comparison to the Eulerian-based CFD method, SPH is advantageous in what concerns the follow-
ing aspects: (a) particular suitability to tackle problems dealing with multiphysics; (b) ease of handling
complex free surface and material interface; and (c) relatively simple computer codes and ease of machine
parallelization. These advantages make it particularly well suited to deal with the problem of interest in
this paper.

The reported work is organized as follows: (1) a MHD equation group is derived, and the mechanism on
turbulence control is addressed; (2) a set of computer programmable SPH formulations is presented; (3) a
benchmarked fluid mechanics problem is employed to test the SPH calculation code; and (4) the transition
to turbulence in planar shear flows is investigated in detail by means of SPH simulations.

2. MHD modeling

The MHD flow is governed by a set of coupled partial differential equations that express the conservation
of mass, momentum and the interaction between the flow and the applied magnetic field. In this paper, elec-
trically conducting fluid flow constrained in two parallel infinite plates is considered. A uniform magnetic field
is applied in the streamwise direction and the boundary plates are electrically insulated. It is assumed that the
hydrodynamic Reynolds number Re is much larger than the magnetic Reynolds number Rem, namely,
Re ¼ UL
m
� Rem ¼

UL
g

. ð1Þ
Here, g = (rl0)�1. m, r and l0 are the kinematic viscosity, electrical conductivity and magnetic permeability of
the free space (l0 = 4p · 10�7 H m�1), respectively. U and L are the characteristic velocity and length of the
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fluid flow, respectively. This assumption guarantees the fluctuations of the magnetic field due to the fluid
motion are very small as compared to the applied field B0; therefore the total magnetic field can be considered
uniform and time independent, and the induced electrical current j is given by
j ¼ rðruþ V � B0Þ; ð2Þ
where V is the fluid velocity vector (bold text designates vector or tensor) and u is the induced electrical po-
tential, which is produced by the interactions of the applied magnetic field and flow vorticity w (=$ · V). The
present study does not aim to investigate the turbulence pattern or structure of MHD turbulent flows, as con-
ducted in other studies [7–9], what of interest here is to investigate the early stages of the transition to turbu-
lence; and the configuration considered here is two dimensional; for which, in practice, it is reasonable to
assume that w is negligible. Furthermore, the induced electrical potential is assumed to be zero, which yields
[42]:
j ¼ rðV � B0Þ. ð3Þ
The Lorentz force defined per unit of volume, F takes the form:
F ¼ j � B0 ¼ rðV � B0Þ � B0. ð4Þ
Because B0 is aligned with the fluid stream the produced Lorentz force F has no influence on the bulk flow, but
it does affect the formation of turbulent fluctuations in the transverse plane. For example, if the velocity fluc-
tuation in the transverse plane has the magnitude of v

0
, the force created to restrain it is �rB2

0v0. This means
that a strong enough magnetic field B0 can effectively inhibit the development of flow turbulence. Two-dimen-
sional planar shear flow is chosen to interpret this concept.

As outlined above, the MHD equations for the transient 2-D (x–y) planar shear flow with the presence of a
uniform, time-independent streamwise (positive x direction) magnetic field B0 are formulated as
Dq
Dt
¼ �q

ou
ox
þ ov

oy

� �
; ð5Þ

q
Du
Dt
¼ � op

ox
þ l

o2u
ox2
þ o2v

oy2

� �
þ F Bx; ð6Þ

q
Dv
Dt
¼ � op

oy
þ l

o
2u

ox2
þ o

2v
oy2

� �
� rB2

0vþ F By ; ð7Þ
where u and v denote the velocity components in the streamwise (x) and transverse (y) direction, respectively.
For the flow of interest, u is the total velocity in x direction and v is the velocity fluctuation in the y direction. q
and l stand for the density and dynamic viscosity, respectively. D/Dt is the material derivative. FBx and FBy

(N/m3) are the components of the body force in the x and y direction, respectively.

3. SPH formulation

In SPH, the continuous flow at time t is represented by a collection of N particles located at position ri(t)
and moving with velocity vi(t), i = 1,2, . . . ,N. The ‘smoothed’ value of any field quantity q(r,v) at a space point
r is a weighted sum of all contributions from the neighbouring particles
hqðr; vÞi ¼
XN

j¼1

mj

qðrjÞ
qðrj; vjÞwðjr� rjj; hÞ; ð8Þ

hrqðr; vÞi ¼
XN

j¼1

mj

qðrjÞ
qðrj; vjÞrwðjr� rjj; hÞ; ð9Þ
where mj and q(rj) denote the mass and density of particle j, respectively. w(jrj,h) is the weight or smoothing
function with h being the smoothing length. In terms of Eq. (9), the ‘smoothed’ version of the continuity equa-
tion, Eq. (5) is
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dqi

dt
¼
X

j

mjvij � riwij. ð10Þ
The summation is over all neighbouring particles j with exception of particle i itself. vij = vi � vj, rij = ri � rj and
wij = w(jri � rjj,h). $i denotes that gradient derivatives are taken with respect to the coordinates at particle i
riwij ¼
rij

jrijj
owij

ori
. ð11Þ
The transformation of the momentum equations, Eqs. (6) and (7), into their SPH version is relatively involved,
because it requires the symmetrization of the pressure terms [15] to satisfy momentum conservation and the
adequate treatment of the viscous terms. The most commonly used, symmetrized SPH expression for the pres-
sure gradients is
� 1

q
rp

� �
i

¼ �
X

j

mj
pi

q2
i
þ

pj

q2
j

 !
riwij. ð12Þ
The use of Eq. (12), in particular when the Lorentz force is present, may facilitate the SPH particles to clump
in pairs, causing tensile instability. This numerical instability was first studied in detail by Swegle et al. [43],
who related the instability to the sign of the product of the stress (or pressure for liquids) times by the second
order derivative of the smoothing kernel. Numerous artifacts were attempted to eliminate or reduce this tensile
instability, among others, Randles and Lisberty [41] used dissipative terms which they called conservative
smoothing, Dilts [44] corrected the standard SPH by generalizing SPH with an interpolant which gives accu-
rate derivatives, and Biessel and Belyschko [45] introduced an artificial quadratic term into their variational
principle to remove the so-called short wavelength instability. More recently, Imaeda and Inutsuka [46] judged
that the numerical instability encountered in their SPH implementation was due to the inaccurate solution of
the continuity equation, since the standard SPH cannot ensure local mass conservation. They used the particle
velocity, instead of the fluid velocity of the standard SPH, to update the particle positions and obtained good
results.

A simple and time-saving correcting method is employed in the present work, which was proposed by
Monaghan [47] and it entails the addition of a small term to the right-hand side of Eq. (12), namely
� 1

q
rp

� �
i

¼ �
X

j

mj
pi

q2
i
þ

pj

q2
j
þ Rf n

ij

 !
riwij; ð13Þ
where
fij ¼
wij

wðDp; hÞ ; ð14Þ
with Dp being the average particle spacing. The factor R depends on the pressure and density; here R is deter-
mined as
R ¼

u1
jpij
q2

i
if pi < 0;

u1

jpjj
q2

j
if pj < 0;

u2
pi

q2
i
þ pj

q2
j

� �
if pi > 0 and pj > 0.

8>>>>>>><
>>>>>>>:

ð15Þ
In Eq. (15), the first and second rows are the basic corrections for the tensile instability; while the last row is
used to avoid the formation of local linear structures. The exponential n is dependent on the smoothing
kernel, n = w(0, h)/w(Dp,h); n is greater than zero, so in essence, the additional term in Eq. (13) represents
a repulsive force that can be considered as an artificial pressure and is used to prevent the particles to
clump. It is worth pointing out that this artificial pressure only takes effect when particles clump (i.e.,
rij < Dp), whereas it has no influence under ‘‘normal’’ flow conditions. The two constants u1 and u2 are
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given the values of 0.5 and 0.01, respectively. Monaghan [47] used a smaller value for u1, u1 = 0.2. In the
present implementation, it was demonstrated that u1 = 0.2 is not sufficiently large to effectively restrain the
tensile instability, therefore u1 = 0.5 is used. The selection of n also has some flexibility. In the original work
by Monaghan [47], the cubic spline kernel was used and the smoothing length h was equal to 1.3Dp, thus n
should be 2.2; whereas n = 4.0 was taken therein, which was based on the assumption of h = Dp; however,
in the present work the value of n will be determined according to the formulation n = w(0,h)/w(Dp,h).

Morris et al. [17] presented an expression to simulate the viscous diffusion:
1

q
r � lr

� �
v

� �
i

¼
X

j

mjðli þ ljÞvij

qiqj

1

jrijj
owij

ori

� �
. ð16Þ
This formulation does not resort to the use of the unrealistic artificial viscosity [40], and it avoids the direct
computation of the second order derivative of the smoothing kernel [15]. Eq. (16) conserves only approxi-
mately the angular momentum [48], but this does not affect its unique accuracy for the simulations of viscous
flows in straight channels [16,17,48]. The substitution of Eqs. (13) and (16) into Eqs. (6) and (7) yields the fol-
lowing form for the SPH momentum equations:
dui

dt
¼ �

X
j

mj
pi

q2
i
þ

pj

q2
j
þ Rf n

ij

 !
ðxi � xjÞ
jrijj

owij

ori
þ
X

j

mjðli þ ljÞuij

qiqj

1

jrijj
owij

ori

� �
þ F Bx; ð17Þ

dvi

dt
¼ �

X
j

mj
pi

q2
i
þ

pj

q2
j
þ Rf n

ij

 !
ðyi � yjÞ
jrijj

owij

ori
þ
X

j

mjðli þ ljÞvij

qiqj

1

jrijj
owij

ori

� �
� rB2

0vi þ F By . ð18Þ
A quasi-compressible method is implemented to calculate the dynamic pressure p, in which an artificial equa-
tion of state is used [17]:
p ¼ p0

q
q0

� �c

� 1:0

� �
; ð19Þ
where p0 is the magnitude of the pressure for the material state being of the reference density q0. To govern
the weak compressibility of the fluid, a large value (7.0) is artificially attributed to the ratio of the specific
heats c. In this way, perturbations of the density field remain very small even at high Reynolds numbers.
The choice of c = 7.0 is based on the equation of state for water and it was first adopted by Monaghan
[49]. A lower value of c is also feasible in SPH simulations, e.g., c = 1.0 as used by Morris et al. [17]. They
argued that a lower value of c gives more accurate pressure estimates and this is favourable to their SPH
implementations of low Reynolds number flows. If cs denotes the speed of sound, it can be formulated by
the following expression:
c2
s ¼

cp0

q0

¼ aU 2; ð20Þ
where U is the characteristic or maximum fluid velocity. The choice of a is a compromise: it should be an ade-
quate value to avoid making p0 (or cs) too large, which will force the time advancement of the simulation to
become prohibitively slow, and to prevent yielding Mach numbers that violate the incompressibility condition
of the fluid; a takes 100 in this paper, which ensures density variations less than 1.0%.

The XSPH variant [19] is used to guarantee the SPH particles move with a velocity consistent with the aver-
age velocity of its neighbouring particles, which is particularly favourable for the simulation of high speed
flows:
dri

dt
¼ vi þ e

X
j

mjvij

�qij
wij. ð21Þ
Here �qij ¼ ðqi þ qjÞ=2:0 and the factor e is chosen as e = 0.5.
A direct numerical integration algorithm is used to perform the integration of Eqs. (10), (17), (18) and (21).

The time step Dt is adaptive and determined by the CFL condition [17]:
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Dt ¼ min
c1h

max
i
ð15:0U ; jvijÞ

; c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h

max acceleration

r
;

c3h
max sound speed

0
@

1
A. ð22Þ
The Courant ‘‘safety’’ factors c1, c2 and c3 are given as c1 = 0.125, c2 = 0.25 and c3 = 0.25, respectively. On the
right-hand side of Eq. (22), the quantity 15.0U is introduced in the denominator of the first constraint to re-
strict it to a value comparable to the other two constraints so that all the three constraints may take effect
during the calculations.

4. Smoothing kernel and boundary conditions

In the present implementation, the high order three-splines quintic kernel is used. The two-dimensional
quintic kernel is defined as
wij ¼
nd

h2

ð3:0� sÞ5 � 6:0ð2:0� sÞ5 þ 15:0ð1:0� sÞ5 if 0 6 s < 1:0;

ð3:0� sÞ5 � 6:0ð2:0� sÞ5 if 1:0 6 s < 2:0;

ð3:0� sÞ5 if 2:0 6 s < 3:0;

0 if s P 3:0;

8>>><
>>>:

ð23Þ
where s = jrijj/h and nd is a normalization constant, which is determined by the normalization property [51] of
the smoothing kernel
Z Z

wðjr� r0j; hÞdr0 ¼ 1:0. ð24Þ
Initially, the distribution of SPH particles is set in a regular structure, and nd takes the value of 7.0/478.0p; this
regular distribution is deformed to some extent as time advances. In order to assure the calculation accuracy,
the value of nd is adjusted, on a real-time basis, with Eq. (24) during the fluid flow development for all the fluid
particles.

The smoothing length h is given by
h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDxÞ2 þ ðDyÞ2

q
; ð25Þ
where Dx and Dy are the initial spacing in the x and y direction, respectively, between two neighbouring par-
ticles, and Dx = Dy. The interpolation of the field quantity with respect to one fluid particle extends to a region
where around 61 neighbouring particles are included. After finalizing the smoothing kernel and smoothing
length, the exponential n in Eq. (13) is calculated to be, n � 1.6.

The treatment of the solid wall boundaries is illustrated in Fig. 1. Taking into account the influence region
of the employed quintic smoothing kernel, four layers of boundary particles are arranged outside of the fluid
channel and parallel to the real wall boundary with the first layer Dp/2 away from the wall plane. These
boundary particles have the same spatial separation Dp as fluid particles. The density of a boundary particle
is set equal to the reference fluid density, q0, and it remains unchanged throughout the calculation. Boundary
Fig. 1. Illustration of the initial particle arrangement and treatment of solid wall boundary.
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particles interact with the fluid particles by contributing to their density variations, and by prescribing viscous
forces on the nearby fluid particles. The boundary particle contribution to the density variation of the fluid
particle implies pressure increases when fluid and boundary particle approach. The increased pressure prevents
the fluid particles to penetrate the wall boundaries, and thus the no-penetrating solid wall condition is war-
ranted. An alternative method to mimic such boundary condition is the strategy of image particles [50]: once
a fluid particle ‘flows’ out to the wall region, its image, which is created by reflecting it with respect to the wall
boundary with opposite wall-normal velocity, is used for the following calculations. This strategy was used by
Libersky et al. [50] and works very well for straight channels, but introduces density errors in the presence of
curved boundaries.

The non-slip wall boundary condition is guaranteed by employing the method used by Morris et al. [17],
which can be dated back to the original work by Takeda et al. [48]. For each fluid particle A, the normal dis-
tance dA to the wall is calculated and for each boundary particle B, dB is obtained. Then an artificial velocity
vB = �(dB/dA)vA is applied to the boundary particle B with the assumption of zero velocity condition on the
boundary plane itself. This artificial velocity vB is used to calculate the viscous force applied to the nearby fluid
particles, but not used to locate the boundary particle position. Boundary particles are motionless or moving
at specified velocities. The relative velocity between fluid and boundary particles is
vAB ¼ vA � vB ¼ bvA; ð26Þ

where
b ¼ min bmax; 1:0þ
dB

dA

� �
; ð27Þ
bmax is used to exclude the extremely large values when fluid particles get too close to the wall. Morris et al.
[17] obtained good results for bmax = 1.5 when simulating low Reynolds number planar shear flows. In the
present study, bmax = 7.0 is specified, which is the largest value of b for the initial regular particle arrangement.

The periodic boundary condition is imposed in the flow direction, which means that the particles close to
the right and left ends interact with each other in terms of Eqs. (10), (17), (18) and (21) due to the periodical
replication of the simulated domain. If there is one particle flowing outside from one end of the calculation
region, the periodicity then ensures that a new particle, which has the same flow quantities (velocity and pres-
sure), enters inside from the other end of the calculation region, thus the number of the total particles mon-
itored is constant.

5. Benchmark test

The test case is a classic fluid mechanics benchmark – the Couette flow between two parallel infinite plates
located at y = �d and y = d, respectively, as shown in Fig. 2. The system is initially at rest. At time t = 0, the
upper plate starts to move at constant velocity U0 along the positive x-axis. Concurrently, an additional body
force FB (m/s2) is aligned parallel to the x-axis too. The resultant velocity profile is dependent on a non-dimen-
sional quantity, designated as v
v ¼ d2q
lU 0

ðF BÞ; ð28Þ
Fig. 2. Test case: Couette flow.
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and its time-dependent series solution is
Fig. 3.
results

Fig. 4.
simula
uðy; tÞ ¼ F B

2m
ðd2 � y2Þ �

X1
n¼0

ð�1Þn 16F Bd2

mp3ð2nþ 1Þ3
cos

py
2d
ð2nþ 1Þ

	 

exp �ð2nþ 1Þ2p2m

4d2
t

 !

þ U 0

2d
ðy þ dÞ þ

X1
n¼1

ð�1Þn 2U 0

np
sin

np
2d
ðy þ dÞ

	 

exp � n2p2m

4d2
t

� �
. ð29Þ
The first two terms in the right-hand side of Eq. (29) designate the contribution from the applied body force FB

and the last two result from the motion of the upper plate. When time t approaches infinite, the steady state
solution takes the form:
uðy;1Þ ¼ v
2

U 0 1� y2

d2

� �
þ 1

2
U 0 1þ y

d

	 

. ð30Þ
The flow is simulated using SPH for m = 0.01 m2 s�1, d = 0.5 m, q = 1000.0 kg m�3 and U0 = 0.2 m s�1. The
body force FB takes the values 0.08, 0.04, 0.016, 0.0 and �0.008 m s�2, yielding normalized values for v of
10.0, 5.0, 2.0, 0.0 and �1.0, respectively. Fifty fluid particles were set to span the flow channel and the periodic
boundary pair is applied in the flow direction. The velocity profiles at time t = 9.43 s and time t approaching
infinite are shown in Figs. 3 and 4, respectively. The largest deviation between SPH simulation and series
Velocity profiles for Couette flow at time t = 9.43 s. (Lines denote series solutions, and the symbols represent SPH simulation
.)

Velocity profiles for Couette flow at time t approaching infinite. (Lines denote series solutions, and the symbols represent SPH
tion results.)
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solution is observed at the position close to the motionless wall, even so, which is less than 1.0%. Therefore,
the overall agreement between simulations and exact analytical solutions is excellent. The actual asymptotic
time for the case shown in Fig. 4 is 37.73 s when all the velocity values are within 97.0% of their final steady
values.

6. Transitional organization of the SPH particles versus the onset of turbulence

Cleary and Monaghan [52] studied the transition to turbulence in planar Poiseuille flow via SPH simula-
tions. They managed to correlate the onset of turbulence to the ordered–disordered transition of the SPH fluid
particles. Here, with the similar geometry and the same initial flow conditions, their work will be replicated.
This effort may be looked as a further test procedure on the SPH algorithm outlined earlier on, and it is also
necessary to use these results to evaluate the effect of the applied streamwise magnetic field acting on the MHD
fluid flow.

A Poiseuille flow between two parallel infinite plates with a separation distance of L = 1.0 m is considered.
Periodic boundaries in the flow direction (x) and solid boundaries confining the flow in the transverse direction
(y) are specified. For low Reynolds number laminar flow, the periodic boundary constraint in the flow direc-
tion is correct; whereas for large Reynolds number flow, the artificial periodicity imposed in the x direction, to
some extent, postpones the transition to turbulence. In order to reduce the influence caused by the artificial
periodicity on the onset of flow turbulence, the computational domain for high Reynolds number flow is
extended to a 3 m · 1 m region, while for low Reynolds number laminar flow is taken a unit square
(1 m · 1 m) as used in [52]. The simulation is commenced with the fluid moving to the right (positive x) at unit
velocity. No static pressure or body force is applied. The fluid motion is then restrained by the viscous forces.
The Reynolds number is defined as Re = UL/m, with U, L being the characteristic velocity (1.0 m/s) and length
(1.0 m), respectively, and the kinematic viscosity m is adjusted to realize Poiseuille flows of different Reynolds
numbers. The initial arrangement of the SPH particles and the treatment of solid wall boundaries were already
illustrated in Fig. 1. Fifty fluid particles are set to span the flow channel.

Fig. 5 shows four snapshots of the flow pattern for Re = 100. Three columns of particles are highlighted to
show the evolution of the boundary layers and to indicate the flow pattern. (Three repetitive geometric units
are depicted in terms of the periodic boundary condition in the x direction.) As expected, the laminar para-
bolic velocity profile develops gradually. The growth in the thickness of the boundary layers is clearly visible at
the early stages of the flow development. At about t = 2.6 s (Fig. 5(c)), the boundary shear effect propagates to
the center of the channel. Afterwards, the only change in the flow pattern is the continuing cumulative atten-
uation in the marker particles front. Although the displacement in the streamwise direction between adjacent
rows of particles is cumulative with time, the flow is stable and the fluid particles remain ordered for the entire
duration of the simulation (up to 20 s). No non-negligible motion is detected in the transverse direction, as
expected for laminar planar Poiseuille flow. Similar flow scenarios were also described by Cleary and Mona-
ghan [52].

Poiseuille flow for Re = 104 is obtained with a reduced viscosity. The corresponding flow patterns are
exhibited in Fig. 6. During the early transient development, the flow is stable and a flow pattern similar to
plug flow sets in. At time t = 1.06 s (Fig. 6(a)), the top and bottom two layer of particles are sheared from
the bulk flow which is still moving to the right at unit velocity. All SPH fluid particles are ordered in a flat
profile. The boundary layers are very thin and can be represented by the top and bottom 2–3 layers of par-
ticles. At around t = 1.33 s (Fig. 6(b)), the structure of the SPH particles are seemingly ordered still. By
t = 1.64 s (Fig. 6(c)), the ordered structure of the SPH particles is deformed to some extent in the transverse
flow direction. At t = 1.84 s (Fig. 6(d)), clearly disordered SPH particle organization appears. Non-negligible
velocity fluctuations exist in both the streamwise and transverse directions. The lines of the marker particles
are still visible, which indicates that the average velocity profile is uniform. The motion is characterized by
plug flow with velocity fluctuations superimposed. Since the Poiseuille flow for Re = 100 does not show
any signs of this kind of ordered–disordered transition on the structure of SPH particles even for a much
longer calculation time, it is reasonable to ascribe this transition to the onset of turbulence.

In order to assess whether there is any connection between this phenomenon and the burst of turbulence,
the mean velocity profile �u and the velocity correlations: �u0u0 and �v0v0 are calculated. This is done by dividing



Fig. 5. Flow pattern of Poiseuille flow for Re = 100, at (a) time = 0.24 s, (b) time = 1.18 s, (c) time = 2.60 s, and (d) time = 3.77 s.
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the flow domain into 50 horizontal stripes and by using a smaller time step to redo the calculations around
time = 1.71 s; then, the results are averaged both spatially and temporally over each sub-region. These results
are plotted in Fig. 7, and clearly, the flow takes the characteristics relevant to turbulent flows. The mean veloc-
ity profile is approaching to that of plug flow, i.e., occurrence of very thin boundary layers. The two velocity
correlations have similar profiles except that the �v0v0 takes the value of zero at the walls. The turbulence sets in
and the symmetry with respect to the x-axis is no longer followed. Qualitatively, these observations agree with
the results reported by Cleary and Monaghan [52] too.

The influence from the SPH particle resolution is studied by examining the dependence of the calculated
turbulence-related quantities (�u0u0 and �v0v0) on the SPH particle resolution. For this purpose, with respect to
the same fluid flow, a Richardson extrapolation for the turbulence-related quantity as a function of 1/(number
of SPH particles) was computed, based on the SPH particle resolution of 150 · 50, 120 · 40 and 240 · 80,
respectively. The obtained SPH results with the first particle resolution, which is employed to obtain the
results presented in this article, deviate from the extrapolated values by 4.2% for the �v0v0 and 8.3% for the
�u0u0 at time t = 0.81 s; by 29.1% for the �v0v0 and 31.4% for the �u0u0 at time t = 1.71 s. The relatively larger error



Fig. 6. Flow pattern of Poiseuille flow for Re = 104, at (a) time = 1.06 s, (b) time = 1.33 s, (c) time = 1.64 s, and (d) time = 1.84 s.
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for the x velocity correlation �u0u0 is due to the fact that its values are smaller (several orders of magnitude smal-
ler at time t = 0.81 s!) than those for �v0v0. More reliable SPH predictions are obtained at the early stages of the
flow turbulence. A finer SPH particle resolution gives the same SPH transitional organization as shown in
Fig. 6, while the boundary layers are better resolved and it yields an earlier time for the onset of turbulence.

7. MHD turbulence control with a streamwise magnetic field

As indicated by Fig. 6, the transition to turbulence for the planar shear flow seems to happen in the follow-
ing sequence: (1) the viscous force restricts the fluid flow to form very thin boundary layers close to the wall
boundaries; (2) disturbances erupting in the boundary layers cause velocity fluctuations in the transverse direc-
tion of the fluid flow; (3) these fluctuations transport momentum from the transverse flow direction to the
streamwise direction; and, (4) once the fluctuations propagate everywhere in the fluid, the structure of the
SPH particles is completely destroyed and turbulence is fully developed. A streamwise magnetic field has
no influence on the bulk flow, but it does restrain the formation of velocity fluctuation in the transverse flow



Fig. 7. Representations of (a) �u, (b) �u0u0, and (c) �v0v0 for Poiseuille flow of Re = 104 at time �1.71 s.
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direction. An applied streamwise magnetic field, therefore, is thought to be effective on the turbulence control
for the planar shear flow, which is to be justified by applying a streamwise magnetic field to the above-men-
tioned planar Poiseuille shear flow for Re = 104.

Since the derivation of Eq. (3) assumes the flow vorticity is negligible; and the employed ‘‘limited’’ SPH
particle resolution can only ensure reliable predictions during the early stages of the flow turbulence, the pres-
ent study on MHD turbulence flow only considers the early stage of the transition to turbulence. Two stream-
wise magnetic fields that give electromagnetic forces of F = �4.0 · 104v and F = �4.0 · 106v, respectively, are
involved. Fig. 8 shows two flow patterns which are plotted from the SPH results of MHD flows imposed by
these two magnetic fields, respectively. The flow patterns take on a plug flow profile with very thin boundary
layers represented by 2–3 fluid particles close to the walls. Both flow patterns indicate that the SPH fluid par-
ticles are still ordered up to the observation time.

The corresponding mean velocity profile �u and the velocity correlations: �u0u0 and �v0v0 are also calculated; the
results are plotted in Figs. 9 and 10, respectively. These plots quantitatively describe the flow state. The mean
velocity profile observed in both these two figures resembles that of plug flow. In Fig. 9, the velocity fluctu-
ations in the x and y direction are comparable, but both at a very low level (10�4 m/s), which reveals that
the flow turbulence, in practice, does not happen until the end of the simulation time, 1.89 s. In Fig. 10,
because a stronger magnetic field is applied, even the observation time is extended by 1.79 s, it can be noted
that the velocity fluctuation in the y direction gets effectively controlled and is restrained below 10�3 m/s still;
whereas the counterpart in the x direction is gradually detectable with an explicit value of 0.05 m/s. The tur-
bulence starts to set in. Both Figs. 9(b) and 10(b) display the maximum velocity fluctuation in the x direction
appears in the central region of the flow passage. This is in contrast to what shown in Fig. 7(b), where there is



Fig. 8. Flow patterns of MHD Poiseuille flow for Re = 104, with an applied streamwise magnetic field giving electromagnetic force (a)
F = �4.0 · 104v at time = 1.89 s and (b) F = �4.0 · 106v at time = 3.68 s, respectively.

Fig. 9. Representations of (a) �u, (b) �u0u0, and (c) �v0v0 for Poiseuille flow of Re = 104 and with an electromagnetic force F = �4.0 · 104v at
time �1.89 s.
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Fig. 10. Representations of (a) �u, (b) �u0u0, and (c) �v0v0 for Poiseuille flow of Re = 104 and with an electromagnetic force F = �4.0 · 106v at
time �3.68 s.
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no magnetic force to restrain the transverse velocity fluctuations, therefore the streamwise velocity fluctuations
are substantially the result of the flow disturbance arising from the boundary layers.

Fig. 11 depicts the temporal history of �u0u0 and �v0v0 at position y = 0.01 m for the aforementioned three
fluid flows for Re = 104, the first of which has no magnetic field applied; the second has an applied streamwise
Fig. 11. The temporal history of turbulence-related velocity correlations at the position of y = 0.01 m for the fluid flow of Re = 104, with
different magnetic field conditions.
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magnetic field giving an electromagnetic force of F = �4.0 · 104v; the third has an imposed electromagnetic
force of F = �4.0 · 106v. The fluid flow without magnetic field applied has the highest transverse velocity fluc-
tuations, which transport the turbulence energy to the streamwise direction; the streamwise velocity fluctua-
tions quickly rise to a higher level; the turbulence grows at a fast rate. An applied streamwise magnetic field
effectively constrains the development of the transverse velocity fluctuations, thus it delays the onset of turbu-
lence. By observing the variation trends of the x and y velocity correlations for the MHD fluid flow of an elec-
tromagnetic force of F = �4.0 · 106v, it can be predicted that the turbulence may still take place at a later
time; however, when the turbulence occurs, the dominant velocity fluctuation (turbulence stress) is in the x

direction; therefore, the turbulence is anisotropic. Qualitatively agreeable results about the turbulence control
effect of a streamwise magnetic field applying to a MHD fluid flow were also reported by Lee and Choi [7].

8. Conclusion

The methodology to control the transition to turbulence of electrically conducting fluid flow with a stream-
wise magnetic field was fully reported. SPH simulations were performed for two-dimensional planar shear
flows with and without the presence of a streamwise magnetic field. The onset of turbulence makes the
SPH fluid particles experience an ordered–disordered transition, revealed by their arrangement. Because the
turbulent fluctuations in the transverse plane of flow are effectively restrained by the induced electromagnetic
force, the transition to turbulence is distinctly delayed for fluid flow subjected to a streamwise magnetic field.
The SPH simulations with respect to the early stages of the transition to turbulence of the MHD flow describe
well this concept. For the MHD flow with a sufficiently strong applied streamwise magnetic field, the Reynolds
stress in the transverse direction may be controlled below a very low level, and even if the turbulence still
occurs, it may be anisotropic as only in the streamwise direction of the fluid flow, the Reynolds stress is
detectable.
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